CSIR - NET 2015
95. A 120 million year old rock situated close to the equator shows a remnant magnetic dip of tan-1(-2/√3) . The approximate drift rate of the land mass is
A) 1.25 cm/year
B) 2.75 cm/year
C) 3.70 cm/year
D) 5.00 cm/year
Solution:
Using tan I= 2tanΦ, using this equation to reconstruct the history of paleo-latitudes.
Inclination (I) : distance to the north pole (dip)
Given data
Time = 120 * 106 years
tanI = 2 tan Φ ---------------(1)
I = tan-1 (2 tan Φ) -------------------(2)
From given problem
I= tan-1(-2/√3) -----------(3)
Compare eq (3) and eq (2)
Therefore,
2 tan Φ = (-2/√3)
tanΦ = (-1/√3)
Φ= tan-1 (-0.577)
Φ= -300 N or 300S
Then approximate drift rate of land mass
Φ= 300 S
= 30 * 110 km (10= 110 km)
= 3300 km
= 3300000 m
=330000000 cm
Therefore,
$Drift rate (V) = \frac{Distance}{time}$
$Drift rate (V) = \frac{330000000}{ 120000000}$
Drift rate (V) = 2.75 cm/yr
nice answer
ReplyDeleteThank you satyapriya.....
ReplyDeleteWelcome..If you like this blog please follow me for latest updates.
ReplyDeleteThank you.