24. Given that the velocity of P-waves in a sandstone matrix is 5600 m/s and that in oil is 1200 m/s, the velocity of P-wave propagation in oil saturated sandstone with 30% porosity is ______________ m/s, (Use Wyllie time average equation.)
Solution:
Velocity
of the matrix (Vm) = 5600 m/s
Velocity
of the oil (Voil) = 1200 m/s
Porosity
= 30%
From
Wyllie time average equation
$\frac{1}{V}= \frac{\phi}{V_f}+\frac{1-\phi}{V_m}$--(1)
$\frac{1}{V}= \frac{\phi}{V_f}+\frac{1-\phi}{V_m}$--(1)
Substitute
above values in equation (1)
$\frac{1}{V}= \frac{0.3}{1200}+\frac{1-0.3}{5600}$
$\frac{1}{V}= \frac{0.3}{1200}+\frac{0.7}{5600}$
$\frac{1}{V}=0.00025+0.000125$
$\frac{1}{V}= 0.000375$
V=2666m/s
$\frac{1}{V}= \frac{0.3}{1200}+\frac{1-0.3}{5600}$
$\frac{1}{V}= \frac{0.3}{1200}+\frac{0.7}{5600}$
$\frac{1}{V}=0.00025+0.000125$
$\frac{1}{V}= 0.000375$
V=2666m/s
Wyllie
– Time average equation:-
It
relates the sonic velocities with the porosity of the rock
$\frac{1}{V}= \frac{\phi}{V_f}+\frac{1-\phi}{V_m}$
V
-Velocity
Vf
-Velocity of the fluid
Φ
– Porosity
Vm
– Velocity of the matrix
It
can be written in terms of interval travel-times
$\triangle t=\phi \triangle t_f +(1-\phi)\triangle t_m$
Reference:
http://www.subsurfwiki.org/wiki/Wyllie_time-average_equation
Post a Comment
Post a Comment