UPSC-2014
1.
The earth rotates once per sidereal day of 23 hours 56 minutes 4.09
seconds. Find the radius of the geostationary earth orbit satellite.
Solution:
The
relation between the Time period and orbital radius is
$T^{2} = \frac{4*\pi^{2}*a^{3}}{\mu}$--(1)
$T^{2} = \frac{4*\pi^{2}*a^{3}}{\mu}$--(1)
Rearranging
the equation the orbital radius ‘a’ is given by
$a^{3}
= \frac{T^2 \mu}{4 *\pi^2}$
For
one sidereal day, T= 86,164.09 s
$a^{3}
= \frac{(86,164.09)^2 *(3.986*10^5)}{4 *(3.14)^2}$
$a^{3}
= 7.4960 * 10^{13} km^3$
a=
42,164.17km
This
is the orbital radius for a geostationary satellite.
(
μ = G M
M= mass of the Earth =$ 5.9 * 10^{24} kg$
G= Gravitational constant =$ 6.674 * 10^{-11} m^3/ (kg* s^2) )$
if calculating 7.49 cube root answer coming 33333 km but yours is 42,164.17 please check once
ReplyDelete=(74960*10^9)^1/3 km
Delete=(74960)^1/3 *10^3 km
= 42.000 *10^3 km
=42000 km (approximately)
Check it once again.
Atercdelioga Hope Frazier Crack
ReplyDeletebenanfefer