CSIR-NET 2015
65. Consider two planets A and B with radii 2r and r, respectively. Let their distances form the Sun be d and 2d , respectively. The solar constants for A (Fsa) and B (Fsb) are related by
A) $F_{sa} =\frac{1}{4}F_{sb}$
B) $F_{sa} =F_{sb}$
B) $F_{sa} =F_{sb}$
C) $F_{sa} =4 F_{sb}$
D) $F_{sa} =2 F_{sb}$
D) $F_{sa} =2 F_{sb}$
Solution:
( Sun- planets distance)
$F_{SB}=\frac{E\times R^2}{r_{SB}^2}$----------------------(3)
Solar constant $(S)=\frac{E\times R^2}{r^2}$ ------------------------(1)
R- radius of the Sun
r- radius of earth’s
orbit around the Sun
( Sun- planets distance)
$F_{SA}=\frac{E\times R^2}{r_{SA}^2}$ ------------------(2)
rSA –
Sun- planet A distance
$F_{SB}=\frac{E\times R^2}{r_{SB}^2}$----------------------(3)
rSB-
Sun-planet B distance
Divide equation (2)
by (3)
$\bf
\frac{F_{SA}}{F_{SB}}=\frac{\frac{E\times
R^2}{r_{SA}^2}}{\frac{E\times R^2}{r_{SB}^2}}$
$\bf
\frac{F_{SA}}{F_{SB}}=\frac{\frac{1}{r_{SA}^2}}{\frac{1}{r_{SB}^2}}$
Given in above
problem rSA= d
rSB= 2d
$\bf \frac{F_{SA}}{F_{SB}}=\frac{\frac{1}{d^2}}{\frac{1}{(2d)^2}}$
$\bf \frac{F_{SA}}{F_{SB}}=\frac{\frac{1}{d^2}}{\frac{1}{4d^2}}$
FSA= 4
FSB
Therefore Solar
constant relation between planet A
and planet B is given above.
and planet B is given above.
Mtacimcie-chi Hope Frazier https://wakelet.com/@caetralhandsub187
ReplyDeletebenanfefer