Introduction to gpsurya blog

$Dear$ $Friends,$ In this blog you will find around 320 solved Geophysics GATE and CSIR-NET and other competitive exams solutions with a better explanation. Please follow and share if you like it. $Thanks,$ $gpsurya$ and $group$

CSIR-NET 2015 (65)

1 comment
CSIR-NET 2015

65. Consider two planets A and B with radii 2r and r, respectively. Let their distances form the Sun be d and 2d , respectively. The solar constants for A (Fsa) and B (Fsb) are related by

A) $F_{sa} =\frac{1}{4}F_{sb}$ 
                            
B) $F_{sa} =F_{sb}$
C) $F_{sa} =4 F_{sb}$                                                       
D) $F_{sa} =2 F_{sb}$

Solution:


Solar constant $(S)=\frac{E\times R^2}{r^2}$ ------------------------(1)


R- radius of the Sun


r- radius of earth’s orbit around the Sun


( Sun- planets distance)



$F_{SA}=\frac{E\times R^2}{r_{SA}^2}$ ------------------(2)


rSA – Sun- planet A distance


$F_{SB}=\frac{E\times R^2}{r_{SB}^2}$----------------------(3)



rSB- Sun-planet B distance


Divide equation (2) by (3)



$\bf \frac{F_{SA}}{F_{SB}}=\frac{\frac{E\times R^2}{r_{SA}^2}}{\frac{E\times R^2}{r_{SB}^2}}$


$\bf \frac{F_{SA}}{F_{SB}}=\frac{\frac{1}{r_{SA}^2}}{\frac{1}{r_{SB}^2}}$




Given in above problem rSA= d

                                     rSB= 2d
$\bf \frac{F_{SA}}{F_{SB}}=\frac{\frac{1}{d^2}}{\frac{1}{(2d)^2}}$
$\bf \frac{F_{SA}}{F_{SB}}=\frac{\frac{1}{d^2}}{\frac{1}{4d^2}}$




FSA= 4 FSB



Therefore Solar constant relation between planet A 

and planet B is given above.





Related Posts

1 comment

Post a Comment

Subscribe Our Newsletter