GATE-2016
Q.33: A spherical cavity of radius 8m has its center 15m below the surface. If the cavity is full of sediments of density 1.5*10^3 kg/m^3 and is in a rock body of density 2.4*10^3 kg/m^3, the maximum value of its gravity anomaly is.........m Gal
Solution;
Gravity
anomaly of the Spherical body (gZ)
= ( (G*MS*Z)
/ (x^2+
z^2)^3/2
)------------------(1)
Excess
mass = MS
Center
is at a depth =z
At
maximum gravity anomaly z= 0
substitute
values in eq(1)
Density
= mass/ volume
mass
= density * volume
Spherical
body volume = (4/3) *П*R^3
mass
=
(4/3) *П*R^3
*
Δρ
gZ
=( ((4/3)* ∏*R^3*
Δρ*G)
/ (z^2)
)
Universal
Gravitational constant (G) = 6.67* 10^-11
N m^2
/ kg^2
Density
contrast (Δρ) = 2.4 *10^3
– 1.5*10^3
=
900 kg / m^3
Radius
of the sphere (R) = 8m
Depth
to the center (z) = 15 m
Maximum
Gravity anomaly (gm)
= ( ((4/3)*3.14*8^3*
900*6.67*10^-11)
/ (15^2)
)
=
(38626762.752 * 10-11)/
675
=
57224.833 *10-11
N/ kg
=
57224.833 * 10-11
m/s^2
(
1 Gal = 1 cm/ s^2
=
10^-2
m/s^2
1 m Gal = 10^-5
m/s^2 )
gm
= 57224.833 * 10^-11
*10^5
mGal
gm
=
57224.833 * 10^-6
mGal
gm
= 0.057224 mGal
Maximum
gravity anomaly (gm)
= 0.06 mGal
CSIR NET December 2017 - 106 (Set -A)
ReplyDeleteGravity anomalies of value 0.1 mgal and 0.2
mgal are located at points separated by 300 m
and 200 m respectively along a profile across
an anomalous body resembling a horizontal
circular cylinder. The depth (in m) to the centre
of the cylinder is
1. 50 2. 71
3. 82 4. 100
Mclavetcler-ta_Wilmington Monica Fowler Here
ReplyDeleterimilemo
moconKguego-1987 Kathy Kantor link
ReplyDeletehttps://colab.research.google.com/drive/1Ko2oMW9seBhQDzK7LNslba4arXjePtyV
link
download
naktudege