127) consider two planets ‘A’, ‘B’
with the following characteristics. The Relation between $T_{1}$  and $T_{2}$ is 
| 
   
  | 
  
   Distance from the sun  | 
  
   Radius of the planet   | 
  
   Incident solar flux density  | 
  
   Equivalent temperature   | 
 
| 
   Planet A  | 
  
   $d_{1}$  | 
  
   $r_{1}$  | 
  
   $F_{1}$  | 
  
   $T_{1}$  | 
 
| 
   Planet B  | 
  
   $d_{2}=4d_{1}$  | 
  
   $r_{2}=2r_{1}$  | 
  
   $F_{2}$  | 
  
   $T_{2}$  | 
 
(Special Thanks to Chandrasekhar, ANU)
Solution:
 Luminosity is the total amount of energy
emitted by the star per unit volume
Luminosity
is mainly depends on two things
1.       Radius of the star 
2.     Surface temperature
$Luminosity(L)=
(4 \pi R^{2})(\sigma T^{4})$
 When we are calculating the Luminosity for the
planets the constant’s are negligible and then the Luminosity
$Luminosity(L)=
R^{2}T^{4}$
From
the above equation we can say that $T^{4}\propto \frac{1}{R^{2}}$
 For the Planet A 
$T^{4}_{1}\propto
\frac{1}{R^{2}_{1}}$
For
the Planet B 
$T^{4}_{2}\propto \frac{1}{R^{2}_{2}}$
From
the above two equations we can write like this
$\frac{T^{4}_{1}}{T^{4}_{2}}=\frac{R^{2}_{2}}{R^{2}_{1}}$
$\frac{T^{4}_{1}}{T^{4}_{2}}=\frac{(2R^{2}_{1})}{R^{2}_{1}}$
$\frac{T^{4}_{1}}{T^{4}_{2}}=\frac{4R^{2}_{1}}{R^{2}_{1}}$
$\frac{T^{4}_{1}}{T^{4}_{2}}=4$
$(\frac{T_{1}}{T_{2}})^{4}=4$
$\frac{T_{1}}{T_{2}}=(4)^{\frac{1}{4}}$
$\frac{T_{1}}{T_{2}}=(2^{2})^{\frac{1}{4}}$
$\frac{T_{1}}{T_{2}}=(2)^{\frac{1}{2}}$
$\frac{T_{1}}{T_{2}}=\sqrt{2}$
$T_{1}=\sqrt{2}T_{2}$
Post a Comment
Post a Comment