Introduction to gpsurya blog

$Dear$ $Friends,$ In this blog you will find around 320 solved Geophysics GATE and CSIR-NET and other competitive exams solutions with a better explanation. Please follow and share if you like it. $Thanks,$ $gpsurya$ and $group$

Snell's law problem

 










1. A P-wave incident on the boundary at an angle of 30 degrees between media of velocities V1 and V2 . The angle of P-wave incidence ip and reflected P & S - waves are i’p ,i’s and refracted P & S – waves are rp and rs respectively .
Velocity of reflected P-wave is (Vp1) = 4000m/s

Velocity of reflected S-wave is (Vs1) = 2500m/s

Velocity of refracted P-wave is (Vp2) = 5000m/s

Velocity of refracted S-wave is (Vs2) = 3500m/s respectively.

Solution:
 
Snell's law:
$$\frac{sini_{p}}{V_{1p}}= \frac{sini^{!}_{p}}{V_{1p}} =\frac{sini^{!}_{s}}{V_{1s}}=\frac{sinr_{p}}{V_{2p}}=\frac{sinr_{s}}{V_{2s}}$$

Velocity of reflected P-wave is (Vp1) = 4000m/s

Velocity of reflected S-wave is (Vs1) = 2500m/s

Velocity of refracted P-wave is (Vp2) = 5000m/s

Velocity of refracted S-wave is (Vs2) = 3500m/s


$i_{P}$- incident  angle of P-wave
$i^{!}_{p}$ - reflected  P-wave
$i^{!}_{s}$ - reflected  s-wave
$r_{p}$- refracted p-wave
$r_{s}$- refracted s-wave


Reflected P-wave angle is:


$$\frac{sini_{p}}{V_{1p}}= \frac{sini^{!}_{p}}{V_{1p}} $$

$$\frac{sin30^{0}}{4000}= \frac{sini^{!}_{p}}{4000} $$

$$\frac{sini^{!}_{p}}{4000}=\frac{sin30^{0}}{4000} $$

$${sini^{!}_{p}}=\frac{sin30^{0}}{4000} \times4000 $$

$${sini^{!}_{p}}={sin30^{0}} $$

$${i^{!}_{p}}={30^{0}} $$


Refracted P-wave angle is

$$\frac{sini_{p}}{V_{1p}}= \frac{sinr_{p}}{V_{2p}} $$

$$\frac{sin30^{0}}{4000}= \frac{sinr_{p}}{5000} $$

$$ \frac{sinr_{p}}{5000}=\frac{sin30^{0}}{4000} $$

$${sinr_{p}}=\frac{sin30^{0}}{4000} \times5000 $$

$${sinr_{p}}={sin30^{0}}\times1.25 $$

$${sinr_{p}}=0.5 \times1.25 $$

$${sinr_{p}}=0.625 $$

$$r=\arcsin{(0.625)} $$

$$r=38.68^{0} $$



Reflected S-wave angle is:

$$\frac{sini_{p}}{V_{1p}}= \frac{sini^{!}_{s}}{V_{1s}} $$

$$\frac{sin30^{0}}{4000}= \frac{sini^{!}_{s}}{2500} $$

$$\frac{sini^{!}_{s}}{2500}=\frac{sin30^{0}}{4000} $$

$${sini^{!}_{s}}=\frac{sin30^{0}}{4000} \times2500 $$

$${sini^{!}_{s}}=0.31 $$

$$i_{s}^{!}=\arcsin{(0.31)} $$

$$i_{s}^{!}=18^{0} $$



Refracted S-wave angle is

$$\frac{sini_{p}}{V_{1p}}= \frac{sinr_{s}}{V_{2s}} $$

$$\frac{sin30^{0}}{4000}= \frac{sinr_{s}}{3500} $$

$$ \frac{sinr_{s}}{3500}=\frac{sin30^{0}}{4000} $$

$${sinr_{s}}=\frac{sin30^{0}}{4000} \times3500 $$

$${sinr_{s}}={sin30^{0}}\times0.875 $$

$${sinr_{s}}=0.5 \times0.875 $$

$${sinr_{s}}=0.4375 $$

$$r_{s}=\arcsin{(0.4375)} $$

$$r_{s}=25.9^{0} $$














 





 

Related Posts

There is no other posts in this category.

Post a Comment

Subscribe Our Newsletter