1. A P-wave incident on the boundary at an angle of 30 degrees between media of velocities V1 and V2 . The angle of P-wave incidence ip and reflected P & S - waves are i’p ,i’s and refracted P & S – waves are rp and rs respectively .
Velocity of
reflected P-wave is (Vp1) = 4000m/s
Velocity of
reflected S-wave is (Vs1) = 2500m/s
Velocity of
refracted P-wave is (Vp2) = 5000m/s
Velocity of
refracted S-wave is (Vs2) = 3500m/s respectively.
Solution:
Snell's law:
\frac{sini_{p}}{V_{1p}}= \frac{sini^{!}_{p}}{V_{1p}} =\frac{sini^{!}_{s}}{V_{1s}}=\frac{sinr_{p}}{V_{2p}}=\frac{sinr_{s}}{V_{2s}}
Velocity of
reflected P-wave is (Vp1) = 4000m/s
Velocity of
reflected S-wave is (Vs1) = 2500m/s
Velocity of
refracted P-wave is (Vp2) = 5000m/s
Velocity of
refracted S-wave is (Vs2) = 3500m/s
i^{!}_{p} - reflected P-wave
i^{!}_{s} - reflected s-wave
r_{p}- refracted p-wave
r_{s}- refracted s-wave
Reflected P-wave
angle is:
\frac{sini_{p}}{V_{1p}}=
\frac{sini^{!}_{p}}{V_{1p}}
\frac{sin30^{0}}{4000}=
\frac{sini^{!}_{p}}{4000}
\frac{sini^{!}_{p}}{4000}=\frac{sin30^{0}}{4000}
{sini^{!}_{p}}=\frac{sin30^{0}}{4000}
\times4000
{sini^{!}_{p}}={sin30^{0}}
{i^{!}_{p}}={30^{0}}
Refracted P-wave
angle is
\frac{sini_{p}}{V_{1p}}= \frac{sinr_{p}}{V_{2p}}
\frac{sin30^{0}}{4000}= \frac{sinr_{p}}{5000}
\frac{sinr_{p}}{5000}=\frac{sin30^{0}}{4000}
{sinr_{p}}=\frac{sin30^{0}}{4000} \times5000
{sinr_{p}}={sin30^{0}}\times1.25
{sinr_{p}}=0.5 \times1.25
{sinr_{p}}=0.625
r=\arcsin{(0.625)}
r=38.68^{0}
Reflected S-wave
angle is:
\frac{sini_{p}}{V_{1p}}= \frac{sini^{!}_{s}}{V_{1s}}
\frac{sin30^{0}}{4000}= \frac{sini^{!}_{s}}{2500}
\frac{sini^{!}_{s}}{2500}=\frac{sin30^{0}}{4000}
{sini^{!}_{s}}=\frac{sin30^{0}}{4000} \times2500
{sini^{!}_{s}}=0.31
i_{s}^{!}=\arcsin{(0.31)}
i_{s}^{!}=18^{0}
Refracted S-wave
angle is
\frac{sini_{p}}{V_{1p}}= \frac{sinr_{s}}{V_{2s}}
\frac{sin30^{0}}{4000}= \frac{sinr_{s}}{3500}
\frac{sinr_{s}}{3500}=\frac{sin30^{0}}{4000}
{sinr_{s}}=\frac{sin30^{0}}{4000} \times3500
{sinr_{s}}={sin30^{0}}\times0.875
{sinr_{s}}=0.5 \times0.875
{sinr_{s}}=0.4375
r_{s}=\arcsin{(0.4375)}
r_{s}=25.9^{0}
{sinr_{s}}=\frac{sin30^{0}}{4000} \times3500
{sinr_{s}}={sin30^{0}}\times0.875
{sinr_{s}}=0.5 \times0.875
{sinr_{s}}=0.4375
r_{s}=\arcsin{(0.4375)}
r_{s}=25.9^{0}
Post a Comment
Post a Comment