Processing math: 100%

Introduction to gpsurya blog

Dear Friends, In this blog you will find around 320 solved Geophysics GATE and CSIR-NET and other competitive exams solutions with a better explanation. Please follow and share if you like it. Thanks, gpsurya and group

Snell's law problem

 










1. A P-wave incident on the boundary at an angle of 30 degrees between media of velocities V1 and V2 . The angle of P-wave incidence ip and reflected P & S - waves are i’p ,i’s and refracted P & S – waves are rp and rs respectively .
Velocity of reflected P-wave is (Vp1) = 4000m/s

Velocity of reflected S-wave is (Vs1) = 2500m/s

Velocity of refracted P-wave is (Vp2) = 5000m/s

Velocity of refracted S-wave is (Vs2) = 3500m/s respectively.

Solution:
 
Snell's law:
\frac{sini_{p}}{V_{1p}}= \frac{sini^{!}_{p}}{V_{1p}} =\frac{sini^{!}_{s}}{V_{1s}}=\frac{sinr_{p}}{V_{2p}}=\frac{sinr_{s}}{V_{2s}}

Velocity of reflected P-wave is (Vp1) = 4000m/s

Velocity of reflected S-wave is (Vs1) = 2500m/s

Velocity of refracted P-wave is (Vp2) = 5000m/s

Velocity of refracted S-wave is (Vs2) = 3500m/s


i_{P}- incident  angle of P-wave
i^{!}_{p} - reflected  P-wave
i^{!}_{s} - reflected  s-wave
r_{p}- refracted p-wave
r_{s}- refracted s-wave


Reflected P-wave angle is:


\frac{sini_{p}}{V_{1p}}= \frac{sini^{!}_{p}}{V_{1p}}

\frac{sin30^{0}}{4000}= \frac{sini^{!}_{p}}{4000}

\frac{sini^{!}_{p}}{4000}=\frac{sin30^{0}}{4000}

{sini^{!}_{p}}=\frac{sin30^{0}}{4000} \times4000

{sini^{!}_{p}}={sin30^{0}}

{i^{!}_{p}}={30^{0}}


Refracted P-wave angle is

\frac{sini_{p}}{V_{1p}}= \frac{sinr_{p}}{V_{2p}}

\frac{sin30^{0}}{4000}= \frac{sinr_{p}}{5000}

\frac{sinr_{p}}{5000}=\frac{sin30^{0}}{4000}

{sinr_{p}}=\frac{sin30^{0}}{4000} \times5000

{sinr_{p}}={sin30^{0}}\times1.25

{sinr_{p}}=0.5 \times1.25

{sinr_{p}}=0.625

r=\arcsin{(0.625)}

r=38.68^{0}



Reflected S-wave angle is:

\frac{sini_{p}}{V_{1p}}= \frac{sini^{!}_{s}}{V_{1s}}

\frac{sin30^{0}}{4000}= \frac{sini^{!}_{s}}{2500}

\frac{sini^{!}_{s}}{2500}=\frac{sin30^{0}}{4000}

{sini^{!}_{s}}=\frac{sin30^{0}}{4000} \times2500

{sini^{!}_{s}}=0.31

i_{s}^{!}=\arcsin{(0.31)}

i_{s}^{!}=18^{0}



Refracted S-wave angle is

\frac{sini_{p}}{V_{1p}}= \frac{sinr_{s}}{V_{2s}}

\frac{sin30^{0}}{4000}= \frac{sinr_{s}}{3500}

\frac{sinr_{s}}{3500}=\frac{sin30^{0}}{4000}

{sinr_{s}}=\frac{sin30^{0}}{4000} \times3500

{sinr_{s}}={sin30^{0}}\times0.875

{sinr_{s}}=0.5 \times0.875

{sinr_{s}}=0.4375

r_{s}=\arcsin{(0.4375)}

r_{s}=25.9^{0}














 





 

Related Posts

There is no other posts in this category.

Post a Comment

Subscribe Our Newsletter