CSIR
NET – DEC 2014
65)
A compressional wave traveling through a medium of seismic velocity
V1,
when incident at the interface of an underlying medium with seismic
velocity V2,
gets refracted at an angle 300.
If the velocity in the underlying medium is 2V2,
the wave incident at the same angle
1)
Is critically refracted
2)
totally reflected
3)
Is refracted at an angle less than 300
4)
Is refracted at the same angle
(Thanks to Chandrashekar, ANU)
(Thanks to Neeraja, AU)
Solution:
From
Snell’s law,
$\frac{\sin
i}{\sin r}=\frac{V_1}{V_2}---(1)$
Refracted angle(r) =30 degrees
Substitute in eq(1)
$\frac{\sin
i}{\sin30^o}=\frac{V_1}{V_2}$
$sin30^o=\frac{1}{2}$
$2sini=\frac{V_1}{V_2}$
$sini=\frac{V_1}{2V_2}$
$incident
angle, (i)=\sin^{-1}(\frac{V_1}{2V_2})--- (2)$
Given that, velocity of the underlying medium is 2V2
and wave incident at the same angle,
$\frac{sini}{sinr}=\frac{V_1}{V_2}---(3)$
eq(2)
substitute in eq(3)
$\frac{sin(sin^{-1}\frac{V_1}{2V_2})}{sinr}=\frac{V_1}{V_2}$
$\because
\sin(\sin^{-1})=1$
$\frac{V_1/2V_2}{\sin r}=\frac{V_1}{V_2}$
$\sin
r = \frac{V_1}{2V_2}\times\frac{2V_2}{V_1}=1$
$\sin
r=\sin 90^0$
r=900
(critically refracted)
Post a Comment
Post a Comment