CSIR
NET – JUNE 2016
43)
What is the typical period of revolution of a polar-orbiting Earth
Satellite, orbiting at a height of 700km from the Earth’s Surface?
1)
24 hrs
2) 60
minutes
3) 12
hrs
4) 100
minutes
Solution:
From
Kepler’s third law,
$T^2=\frac{4\pi^2}{GM}a^3---(1)$
T-
time period
Semi-major
axis of the orbit(a)=6371+700=7071km
G-
Universal Gravitational Constant
$(6.67\times10^{-11}m^3/kg s^2)$
M-
mass of the earth
$Density=\frac{mass}{volume}$
$mass=Density\times volume=5500kg/m^3\times\frac{4}{3}\pi r^3
=5500\times \frac{4}{3}\times(3.14)\times(6371000)^3=5.95\times 10^{24}$
=5500\times \frac{4}{3}\times(3.14)\times(6371000)^3=5.95\times 10^{24}$
$G\times
M=6.67\times10^{-11}\times5.95\times10^{24}=3.97\times10^{14}$
$T^2=\frac{4\times(3.14)^2}{3.97\times10^{13}}(7071000)^3=3.512\times10^{21-14}=3.512\times10^7$
$T=\sqrt{3.512\times10^7}=5926s=98.7min=99minutes$
Extra
information:
$g=\frac{Gm}{r^2}$
$G=\frac{g.r^2}{m}$
$=\frac{m/s^2\times m^2}{kg}=m^3/s^2.kg$
Post a Comment
Post a Comment