CSIR_NET_JUNE_2019
91)
Compared to the gravity field measured at the surface, the one
measured at the bottom of the 200 m deep bore hole, through a medium
of density(d) such that πdG = 0.068 m gal/m will be
A)
Larger by 62 m gals
B)
Larger by 38 m gals
C)
Larger by 14 m gals
D)
Smaller by 14 m gals .
(Special Thanks to Chandrashekar, ANU)
Solution:
Given that $\triangledown h $=200 m
$\pi \rho G = 0.06 mgal/m$
The measured Gravity in a Borehole Gravimetry is
$\triangledown g =(0.3086 - 0.0838\times \rho)\triangledown h$
$\pi \rho G = 0.06 mgal/m$
$\rho = \frac{0.06}{\pi G}\frac{mgal}{m}$
$\rho=\frac{0.06}{(3.14)(6.67\times 10^{-11} m^{3} kg^{-1}s^{-2})}\frac{mgal}{m}$
$\rho=\frac{0.06}{20.9438\times 10^{-11}}\frac{mgal}{m}\frac{kg sec^{2}}{m^{3}}$
$\rho=0.002864 \times 10^{11}\frac{10^{-3} gal}{m}\frac{(10^{3} gm) sec^{2}}{(10^{2} cm)^{3}}$
$\rho = 0.002864 \times 10^{11} \times 10^{-3} \times 10^{-2}\frac{m}{sec^{2}}\frac{sec^{2}}{m}\frac{10^{3}gm}{10^{6}cc}$
$\rho = 0.002864 \times 10^{11}\times 10^{-3} \times 10^{-2}\times 10^{3} \times 10^{-6}\frac{gm}{cc}$
$\rho = 0.002864 \times 10^{3} \frac{gm}{cc}$
$\rho= 2.864 gm/cc$
The Gravity from Bore hole Gravimetry is
$\triangledown g =(0.3086 - 0.0838\times \rho)\triangledown h$
$\triangledown g =(0.3086 - 0.0838\times 2.864)200$
$\triangledown g =(0.3086 - 0.24)200$
$\triangledown g =0.0686\times 200$
$\triangledown g = 13.72 $
The positive sign indicates larger at a value 13.72 nearly 14 mgals.
$\triangledown g =14 mgals$
Note:
Let $g_{1}$,$g_{2}$ be the values of gravity measured in a vertical borehole at heights $h_{1}$ and $h_{2}$ respectively
The Values of $g_{2}$ will be larger than $g_{1}$ for two reasons
1. The lower measurement level is closer to the earth’s center, $g_{2}$ will be greater than $g_{1}$ by the amount of combined elevation correction.
2. At the lower level $h_{2}$ the gravimeter experiences an upward Bouguer attraction due to the material between the two surfaces. This reduces the measured gravity $h_{2}$ and the requires a compensation increase to $g_{2}$ of amount $(0.0419\times\rho)\triangledown h$mgals
References:
1. Fundamentals of Geophysics by William Lowrie.
2. Whole Earth Geophysics by J. Lilliwe
sir,we can solve this easily by using this formula (0.3086-4πdGh) mgal. we need not to calculate density value
ReplyDeleteOk Srinu, I will check it once again.
DeleteI thick formula is (0.3086-4pi G rho )h
sputatbe_ma-1978 Karen Rogers click here
ReplyDeletehttps://colab.research.google.com/drive/1hoxjUV5DW5UauQH57SJnhqTf7xzU0meD
download
download
perbenonovs