28.
Given the Bouguer density of 2.8 g/cc , the Bouguer correction for a
gravity station at an elevation of 30 m above the datum is
_________________mGals.
(Thanks to Saroja)
Solution:
Formula:
Bouguer
correction $({\triangle g}_{Bc})=2 \pi G\triangle \rho t$
G=
universal gravity constant = $6.67*10^{-11} m^{3}/kg s^{2}$
$\triangle\rho=2.8
gm /cc$
=$2800
kg/ m^{3}$
elevation
t = 30 m
${\triangle
g}_{Bc}=2 \pi G\triangle \rho t $
=
$ 2*3.14*6.67*10^{-11}*2800*30 m^{3}/kg.s^{2}*kg/m^{3}*m$
=
$3518554.8*10^{-11}m/s^{2}$
=
$0.352*10^{-11+7}m/s^{2}$
=$0.352*10^{-4}
m/s^{2}$
=$0.352*10^{-2}cm/s^{2}$
$(Gal =1cm/s^2) $
=$0.352*10^{-2}Gal$
=$
0.352*10^{-2}*10^{3}mGal$
=3.52
mGal.
Post a Comment
Post a Comment