Loading web-font TeX/Math/Italic

Introduction to gpsurya blog

Dear Friends, In this blog you will find around 320 solved Geophysics GATE and CSIR-NET and other competitive exams solutions with a better explanation. Please follow and share if you like it. Thanks, gpsurya and group

CSIR-NET 2018 DEC

2 comments

 


108) A planet of 70,000 km radius exhibits a magnetic field of 4.2 Oe at its equator. What is the rate of decrease of its magnetic field (in gammas/meter) on its surface at the location of magnetic field \arccos(\sqrt{\frac{3}{4}})


(Special thanks to Y.Suresh Sir, GSI)

(Thanks to Chandrasekhar, ANU)


Solution:


Given that radius of the planet(r) = 70,000 km

 Magnetic field at the equator  = 4.2 Oe

The Earth’s total magnetic field in terms of geographical latitude (\phi) is as below

B_{F}=\frac{\mu_{0}}{4\pi}\frac{m}{r^{3}}\sqrt{3\sin ^{2}\phi +1}

 As per given data at the equator the total magnetic field is 4.2 Oe means at a geographical latitude 00

B_{F}=\frac{\mu_{0}}{4\pi}\frac{m}{r^{3}}\sqrt{3\sin ^{2}\phi +1}

 

B_{F(equator)}=4.2

 

\frac{\mu_{0}}{4\pi}\frac{m}{r^{3}}\sqrt{3\sin ^{2}\phi +1}=4.2

 

\frac{\mu_{0}}{4\pi}\frac{m}{r^{3}}\sqrt{3\sin ^{2}(0) +1}=4.2

 

\frac{\mu_{0}}{4\pi}\frac{m}{r^{3}}\sqrt{0 +1}=4.2

 

\frac{\mu_{0}}{4\pi}\frac{m}{r^{3}}=4.2

 

Now we have to calculate the rate of decrease of magnetic field on its surface at the location of  magnetic latitude \arccos(\sqrt{\frac{3}{4}})

 Mean the latitude

\phi=\arccos(\sqrt{\frac{3}{4}})

 

\phi=\arccos(\frac{\sqrt{3}}{2})

 

\cos\phi =\frac{\sqrt{3}}{2}

 

\cos\phi =\cos 30

 

\phi=30

The rate of decrease in the magnetic field

\frac{dB_{F}}{dr}=\frac{1}{dr}(\frac{\mu_{0}}{4\pi}\frac{m}{r^{3}}\sqrt{3\sin ^{2}\phi +1})

 

\frac{dB_{F}}{dr}=\frac{-3\mu_{0}}{4\pi}\frac{m}{r^{4}}\sqrt{3\sin ^{2}\phi +1}

 

\frac{dB_{F}}{dr}=\frac{-3}{r}(\frac{\mu_{0}}{4\pi}\frac{m}{r^{3}})\sqrt{3\sin ^{2}(30) +1}

 

\frac{dB_{F}}{dr}=\frac{-3}{70,000}(4.2)\sqrt{1+\frac{3}{4}}

 

\frac{dB_{F}}{dr}=\frac{-3\times 4.2}{70,000}\sqrt{\frac{7}{4}}

 

\frac{dB_{F}}{dr}=0.0002376 Oe/km

 

\frac{dB_{F}}{dr}=0.0002376 \frac{10^{5} gamma}{10^{3}meter}

 

\frac{dB_{F}}{dr}=0.0002376 \times 10^{2} gamma/meter

 

\frac{dB_{F}}{dr}=0.02376 gamma/meter

 

Related Posts

There is no other posts in this category.

2 comments

  1. Gravity anomaly values of 1.2, 2.4 and 3.6 in mgals are located at distance coordinates 20, 24
    and 28 km, respectively, along a gravity profile across a faulted basement of limited throw. The
    depth to the basement (in km) is:

    Please solve this. If it is a faulted basement, then at which point will we calculate the depth?

    ReplyDelete
    Replies
    1. http://gpsurya.blogspot.com/2020/04/csir-net-2018-dec.html?m=1

      Delete

Post a Comment

Subscribe Our Newsletter