5) The Geometric factor of the following electrode configuration is
(Thanks to Chandrasekhar, ANU)
Solution:
The apparent resistivity $\rho_{a}= 2\pi \frac{\triangle V}{I}[(\frac{1}{r_{1}}-\frac{1}{r_{2}})-(\frac{1}{r_{3}}-\frac{1}{r_{4}})]^{-1}---(1)$
From the figure $r_{1}$=a
$r_{2}$=∞
$r_{3}$=2a
$r_{4}$=∞
By substituting
the above values in equation (1)
$\rho_{a}= 2\pi \frac{\triangle V}{I}[(\frac{1}{r_{1}}-\frac{1}{r_{2}})-(\frac{1}{r_{3}}-\frac{1}{r_{4}})]^{-1}$
$\rho_{a}= 2\pi \frac{\triangle
V}{I}[(\frac{1}{a}-\frac{1}{\infty})-(\frac{1}{2a}-\frac{1}{\infty})]^{-1}$
$\rho_{a}= 2\pi \frac{\triangle
V}{I}[(\frac{1}{a}-\frac{1}{2a})]^{-1}$
$\rho_{a}= 2\pi \frac{\triangle
V}{I}[\frac{2a-a}{2a^{2}}]^{-1}$
$\rho_{a}= 2\pi \frac{\triangle
V}{I}[\frac{a}{2a^{2}}]^{-1}$
$\rho_{a}= 2\pi \frac{\triangle
V}{I}[\frac{1}{2a}]^{-1}$
$\rho_{a}= 4 \pi a \frac{\triangle V}{I}$
The half life of a parent radionuclide is 100years, if parent radionuclide decays to daughter radionuclide which itself decays with a decay constant of 1/4th that of the parent radionuclide, then the radioactive equilibrium will be reached after how many years? (Assume at time t=0 the number of daughter radionuclide is zero)
ReplyDeleteUse this formula T_eq = {1 / (λ1 - λ2) } . ln (λ1 /λ2)
DeleteGiven that λ2= λ1/4
Gate-2012 paper question-: how to solve please explain in details
ReplyDeleteIn a sequence of equally thick layers in the subsurface, normally incident reflection coefficients at the three interfaces are: 0.10, 0.15 and 0.18.
Q.50 The amplitude of primary reflection from the deepest interface is
(A) 0.184 (B) 0.174 (C) 0.165 (D) 0.156
Q.51 The amplitude of the surface multiple that arrives along with the reflection from the deepest
interface is
(A) 0.008 (B) 0.005 (C) 0.003 (D) 0.001
temptageomo Sam Taylor Click
ReplyDeleteget
moordmodasam