54 & 55) The peak gravity anomaly over a 2-D
line mass of circular cross-section(horizontal cylinder) of density contrast
500 kg/m3 is 1.674 milli gal. The anomaly decreases to 0.8387 m
gal at a distance of 500 m along a principle profile. The universal gravitation
constant G= 6.6667*10-11 m3 sec-2 kg-1.
1. The
depth(m) to the center of line mass and radius(m) to the horizontal cylinder
2. Compute the access mass per unit length (kg/m) of the line mass (Thanks to Chandrasekhar, ANU)
Solution:
Given that
Density contrast (Δρ) = 500 kg/m3.
Maximum Gravity anomaly ($\triangledown g_{max}$)= 1.674 milli gal
=
$1.674\times 10^{-5} m/sec^{2}$
At a distance of 500 m the gravity anomaly = 0.8387 milli gal.
For a horizontal cylinder the anomaly will
reduce to its half of its maximum anomaly at the its half width distance.
According to the
above statement the half width ($x_{1/2}$) of the horizontal cylinder is 500m.
The Depth to the
center of the line mass will be defined as Z = $x_{1/2}$
Z= 500m
Similarly the maximum
gravity anomaly can be defined using the radius of the cylinder and the depth
to the center of line mass as
$\triangledown
g_{max} =2\pi G(\frac{\triangledown\rho\times R^{2}}{Z})$
$R^{2}=
\frac{\triangledown g_{max}Z}{2\pi G \triangledown\rho}$
$R^{2}=
\frac{(1.674\times 10^{-5})\times (500)}{2\times3.14\times
6.667\times10^{-11}\times500}$
$R^{2}= \frac{837 \times
10^{-5}}{20933.438\times 10^{-11}}$
$R^{2}= 0.0399838\times
10^{6}$
$R =
\sqrt{0.0399838\times 10^{6}}$
$R=
199.9 m$
The
Excess mas can be defined as
$M_{exe}=
\frac{\triangledown g_{maz}\times Z^{2}}{2G}$
$\frac{M_{exe}}{Z}(kg/m)=\frac{\triangledown
g_{maz}\times Z}{2G}$
$\frac{M_{exe}}{Z}=\frac{1.674\times
10^{-5}\times 500}{2\times 6.667 \times 10^{-11}}$
$\frac{M_{exe}}{Z}=\frac{837\times
10^{-5} }{13.334 \times 10^{-11}}$
$\frac{M_{exe}}{Z}=62.77186
\times 10^{6}$
$\frac{M_{exe}}{Z}=6.277186
\times 10^{7}(kg/m)$
For the given problem
1. The
depth to the center of the line mass is 500m.
2. The
radius of the horizontal cylinder is 199.9 m
3. The
excess mass for kg/m is $6.277186 \times 10^{7}$
Post a Comment
Post a Comment