Determine the Nyquist rate and Nyquist interval of given below signal,
$x(t)=sin500\pi t \times
cos300\pi t$
Solution:
Given signal,
$x(t)=sin500\pi t \times
cos300\pi t---(1)$
Important Trigonometric
formulas,
$2 sinA
cosB=\left[sin(A+B)+sin(A-B) \right]---(2)$
$2 cosA
sinB=\left[sin(A+B)-sin(A-B) \right]$
From given equation
similar to equation (2)
Then,
$sin 500t \times
cos300\pi t=\frac{1}{2}[sin(500\pi +300\pi)t+sin(500\pi-300\pi)t]$
$sin 500t \times cos300\pi
t=\frac{1}{2}[sin800 \pi t+sin200 \pi t]$
This is like below
equation
$x(t)=\frac{1}{2}[sin\omega_1
t+sin\omega_2 t]$
$\omega_1=800\pi$
$\omega_2=200\pi$
To calculate the maximum
frequency from above values is
$\omega=2\pi f$
Therefore,
$f_1=400Hz$
$f_2=100Hz$
Maximum frequency is
nothing but highest frequency in a given signal
maximum frequency
$f_{max}=400Hz$
To calculate the Nyquist
rate or sampling rate
$f_{Nr}=2f_{max}$
$f_{Nr}=2\times 400$
$f_{Nr}=800Hz$
To calculate the Nyquist
interval, $T_{Ni}$ is
$T_{Ni}=\frac{1}{f_{Ni}}$
or $T_{Ni}=\frac{1}{2\times f_{max}}$
$T_{Ni}=\frac{1}{800}$
$T_{Ni}=0.00125 s$
$T_{Ni}=1.25 ms$
Extra information:
Important Trigonometric formulas,
$2 cosA cosB=\left[cos(A+B)+cos(A-B) \right]$
$2 sinA sinB=\left[cos(A-B)-cos(A+B) \right]$
Post a Comment
Post a Comment