Introduction to gpsurya blog

$Dear$ $Friends,$ In this blog you will find around 320 solved Geophysics GATE and CSIR-NET and other competitive exams solutions with a better explanation. Please follow and share if you like it. $Thanks,$ $gpsurya$ and $group$

CSIR-NET 2016 DEC (51)

2 comments
CSIR-NET

51. Assuming the Earth's magnetic field to be purely dipolar, the ratio of total magnetic field intensity at 45 degrees magnetic latitude to that at the equator will be

A) 2
B) √(5/2)
C) 1/√2
D) √5/2 


Solution:

Magnetic field intensity B is

$B= \frac{\mu_0 m}{4\pi r^3}\sqrt{1+3sin^2\phi}$ -------(1)

Magnetic field intensity at 45 degrees is

$B_{45^0}= \frac{\mu_0 m}{4\pi r^3}\sqrt{1+3sin^245^0}$ ---(2)

$sin45^0 =\frac{1}{\sqrt{2}}$ ---(3)

substitute eq(3) value in eq(2)

$B_{45^0}= \frac{\mu_0 m}{4\pi r^3}\sqrt{1+(3\times\frac{1}{2})}$

$B_{45^0}= \frac{\mu_0 m}{4\pi r^3}\sqrt{\frac{5}{2}}$ ---(4)

Magnetic field intensity at 0 degress (equator)

$B_{0^0}= \frac{\mu_0 m}{4\pi r^3}\sqrt{1+3sin^20^0}$ ---(5)

$sin0^0=0$ -----(6)

substitute eq(6) value in eq(5)

$B_{0^0}= \frac{\mu_0 m}{4\pi r^3}$ ----------(7)


The ratio of total magnetic field intensity at 45 degrees magnetic latitude to that at the equator will be

eq (4) divided by eq (7)

Therefore,

$\frac{B_{45^0}}{B_{0^0}} = \frac{ \frac{\mu_0 m}{4\pi r^3}\sqrt{\frac{5}{2}} }{ \frac{\mu_0 m}{4\pi r^3}}$

$\frac{B_{45^0}}{B_{0^0}} =\sqrt{\frac{5}{2}}$
  

Related Posts

2 comments

  1. Hello Sir, Can I get the reference for the formula?

    ReplyDelete
    Replies
    1. I updated the new solution, Please check it once...

      Delete

Post a Comment

Subscribe Our Newsletter