CSIR-NET
51. Assuming the Earth's magnetic field to be purely dipolar, the ratio of total magnetic field intensity at 45 degrees magnetic latitude to that at the equator will be
A) 2
B) √(5/2)
C) 1/√2
D) √5/2
Solution:
Magnetic
field intensity B is
$B=
\frac{\mu_0 m}{4\pi r^3}\sqrt{1+3sin^2\phi}$ -------(1)
Magnetic
field intensity at 45 degrees is
$B_{45^0}= \frac{\mu_0
m}{4\pi r^3}\sqrt{1+3sin^245^0}$ ---(2)
$sin45^0 =\frac{1}{\sqrt{2}}$
---(3)
substitute eq(3) value in
eq(2)
$B_{45^0}= \frac{\mu_0
m}{4\pi r^3}\sqrt{1+(3\times\frac{1}{2})}$
$B_{45^0}= \frac{\mu_0 m}{4\pi
r^3}\sqrt{\frac{5}{2}}$ ---(4)
Magnetic field intensity at 0
degress (equator)
$B_{0^0}= \frac{\mu_0 m}{4\pi
r^3}\sqrt{1+3sin^20^0}$ ---(5)
$sin0^0=0$ -----(6)
substitute eq(6) value in
eq(5)
$B_{0^0}= \frac{\mu_0 m}{4\pi
r^3}$ ----------(7)
The
ratio of total magnetic field intensity at 45 degrees magnetic
latitude to that at the equator will be
eq
(4) divided by eq (7)
Therefore,
$\frac{B_{45^0}}{B_{0^0}}
= \frac{ \frac{\mu_0 m}{4\pi r^3}\sqrt{\frac{5}{2}} }{ \frac{\mu_0
m}{4\pi r^3}}$
$\frac{B_{45^0}}{B_{0^0}}
=\sqrt{\frac{5}{2}}$
Hello Sir, Can I get the reference for the formula?
ReplyDeleteI updated the new solution, Please check it once...
Delete