csir net(dec)-2018
107) A 2.0
km thick elevated land mass of density 2.7g/cc is associated with a Bouger
anomaly of -176g/cc. The free air anamoly is (assume that 2πG = 42 mgals/km/g/cc).
a) -51 mgals
b)50
mgals
c) -85 mgals
d) 85 mgals
(Thanks to Suresh Sir ANU)
(Thanks to Neeraja AU)
Sol:
$$\triangle g_B=g_m+(\triangle
g_{FA}-\triangle g_{BP}+\triangle g_T+\triangle g_{tide})-g_n-(1)$$
$$\triangle g_F=g_m+(\triangle
g_{FA}+\triangle g_T+\triangle g_{tide})-g_n-(2)$$
Bouger anamoly $(\triangle g_B)$ -
Free air anamoly$(\triangle
g_F)$ =$-\triangle g_{BP} $
$$\triangle g_B-\triangle
g_F=-\triangle g_{BP}-(3a)$$
$$\triangle g_{BP}\rightarrow Bouger
plate correction$$
$$\triangle g_{BP}=2\pi G\triangle\rho
t-(4)$$
$$\triangle g_B-\triangle g_F=-2\pi
G\triangle\rho t-(5)$$
$$\triangle\rho=2.7g/cc$$
$$\triangle g_B=-176mgals$$
$$2\pi G=42mgal/km/g/cc$$
$$\triangle g_B-\triangle g_F=-2\pi
G\triangle\rho t-(5)$$
$$-176-\triangle
g_F=-42\times2.7\times2$$
$$-176-\triangle g_F=-226.8$$
$$\triangle g_F=-226.8+176$$
$$-\triangle g_F=-50.8$$
$$\therefore \triangle g_F=50mgal$$
$$\therefore Free air anamoly(
\triangle g_F)=50mgal$$
$g_m\rightarrow $ measured gravity value
$g_n\rightarrow $ normal gravity value
$g_{FA}\rightarrow $ Free air correction
$g_{BP}\rightarrow$ Bouger plate correction
$g_T\rightarrow $ terrain correction
$g_{tide}{\rightarrow tidal correction}$
1 km thick elevated landmass of density 2.7 gm/cc is associated with a free air anomaly that is half of bouger anomaly. If the density contrast at the mantle-crust boundary is 0.3 gm/cc, what would be the thickness of the root?
ReplyDelete1. 12 km
2. 18 km
3. 22.5 km
4. 27 km