csir net(dec)-2018
107) A 2.0
km thick elevated land mass of density 2.7g/cc is associated with a Bouger
anomaly of -176g/cc. The free air anamoly is (assume that 2πG = 42 mgals/km/g/cc).
a) -51 mgals
b)50
mgals
c) -85 mgals
d) 85 mgals
(Thanks to Suresh Sir ANU)
(Thanks to Neeraja AU)
Sol:
\triangle g_B=g_m+(\triangle
g_{FA}-\triangle g_{BP}+\triangle g_T+\triangle g_{tide})-g_n-(1)
\triangle g_F=g_m+(\triangle
g_{FA}+\triangle g_T+\triangle g_{tide})-g_n-(2)
Bouger anamoly (\triangle g_B) -
Free air anamoly(\triangle
g_F) =-\triangle g_{BP}
\triangle g_B-\triangle
g_F=-\triangle g_{BP}-(3a)
\triangle g_{BP}\rightarrow Bouger
plate correction
\triangle g_{BP}=2\pi G\triangle\rho
t-(4)
\triangle g_B-\triangle g_F=-2\pi
G\triangle\rho t-(5)
\triangle\rho=2.7g/cc
\triangle g_B=-176mgals
2\pi G=42mgal/km/g/cc
\triangle g_B-\triangle g_F=-2\pi
G\triangle\rho t-(5)
-176-\triangle
g_F=-42\times2.7\times2
-176-\triangle g_F=-226.8
\triangle g_F=-226.8+176
-\triangle g_F=-50.8
\therefore \triangle g_F=50mgal
\therefore Free air anamoly(
\triangle g_F)=50mgal
g_m\rightarrow measured gravity value
g_n\rightarrow normal gravity value
g_{FA}\rightarrow Free air correction
g_{BP}\rightarrow Bouger plate correction
g_T\rightarrow terrain correction
g_{tide}{\rightarrow tidal correction}
1 km thick elevated landmass of density 2.7 gm/cc is associated with a free air anomaly that is half of bouger anomaly. If the density contrast at the mantle-crust boundary is 0.3 gm/cc, what would be the thickness of the root?
ReplyDelete1. 12 km
2. 18 km
3. 22.5 km
4. 27 km