1.A
seismic wave emanating from a shot point, when incident at angle 30
degrees at a point P on a refraction, gets refracted at an angle 60
degrees. If the wave is incident 52m away from P, it would be
critically refracted.(Thanks to Neeraja-AU)
Find
the
a)
critical angle
2)depth
3)
cross over distance.
a)
critical angle
$$\frac{sini}{sinr}=\frac{V_{1}}{V_2}$$
$$\frac{sin30^o}{sin60^o}=\frac{V_{1}}{V_2}$$
$$\frac{V1}{V2}=\frac{1/2}{\sqrt3/2}=\frac{1}{\sqrt3}$$
$$\frac{sini}{sinr}=\frac{V_{1}}{V_2}$$
$$\frac{sini_c}{sin90^o}=\frac{1}{\sqrt3}$$
$$sini_c=\frac{1}{\sqrt{3}}$$
$$\cos
i_c=\sqrt{(1-(\frac{1}{\surd3})^2)}$$
$$=\sqrt{1-\frac{1}{3}}$$
$$=\sqrt{\frac{3-1}{3}}$$
$$=\sqrt{\frac{2}{3}}$$
$$\tan
i_c=\frac{sini_c}{cosi_c}=\frac{1/\sqrt{3}}{\sqrt{2}/\sqrt{3}}=\frac{1}{\sqrt{2}}$$
$$i_c=\tan^{-1}(\frac{1}{\sqrt{2}})$$
b)
The depth of the refractor is about:
$$\triangle
SPB$$
$$\tan30^o=\frac{x}{h}$$
$$\frac{1}{\sqrt{3}}=\frac{x}{h}$$
$$h=x\sqrt{3}$$
$$x=\frac{h}{\sqrt{3}}$$
$$\triangle
SDC$$
$$\tan
i_c=\frac{x+52}{h}$$
$$\frac{1}{\sqrt{2}}=\frac{x+52}{h}$$
$$\frac{h}{\sqrt{2}}={x+52}$$
$$\frac{h}{\sqrt{2}}=\frac{h}{\sqrt{3}}+52$$
$$h[\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}]=52$$
$$h[\frac{\sqrt{3}-\sqrt{2}}{\sqrt{6}}]=52$$
$$h=400m$$
c)
cross over distance
$$z=\frac{x_{crs}}{2}\sqrt{\frac{V_2-V_1}{V_2+V_1}}$$
$$x_{crs}=2z\sqrt{\frac{V_2+V_1}{V_2-V_1}}$$
$$x_{crs}=2z\sqrt{\frac{V_2+V_1}{V_2-V_1}}$$
$$=2\times400\sqrt{\frac{1+\frac{V_1}{V_2}}{1-\frac{V_1}{V_2}}}$$
$$=800\sqrt{\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}}$$
$$=800\sqrt{\frac{\sqrt{3}+1}{\sqrt{3}-1}}$$
$$=800\times1.9311$$
xcrs=1540m
Post a Comment
Post a Comment