CSIR_NET_2018_
DECEMBER
115)
A P-wave is
incident at an angle of 300
upon a horizontal interface separating two media which are both
poissions solid. If the P-wave velocity of the first layer is 3
km/sec and the critical angle is 600
, then the angle
of reflection of the shear wave is
A)
$\arcsin(\frac{1}{6})$
B) $\arcsin(\frac{1}{4})$
C)
$\arcsin(\frac{1}{3})$
D) $\arcsin(\frac{1}{2})$
(Thanks to Chandrasekhar, ANU)
Solution:
Here
we use two formulas
-
$\frac{V_{P}}{V_{S}}= \sqrt{\frac{2(1-\nu)}{(1-2\nu)}}$
-
$\frac{Sin Ip}{Vp1}=\frac{Sin Is}{Vs1}=\frac{Sin Rp}{Vp2}=\frac{Sin Rs}{Vs2}$
Poissions solid value ($\nu$) =0.25
Velocity of the P-wave (V )= 3 km/s
$\frac{V_{P}}{V_{S}}=
\sqrt{\frac{2(1-\nu)}{(1-2\nu)}}$
$\frac{3}{V_{S}}=\sqrt{\frac{2(1-0.25)}{(1-2*0.25)}}$
$\frac{3}{V_{S}}=\sqrt{\frac{2*0.75}{0.5}}$
$\frac{3}{V_{S}}=\sqrt{3}$
$V_{S}=\frac{3}{\sqrt{3}}$
$V_{S}=\sqrt{3}km/sec$
i.e
$V_{s_{1}}=\sqrt{3}km/sec$
now
we use the 2nd
formula
$\frac{Sin Ip}{Vp1}=\frac{Sin
Is}{Vs1}=\frac{Sin Rp}{Vp2}=\frac{Sin Rs}{Vs2}$
Ip - incident and reflected angles of P wave
Is - reflected angle of S-wave
Vp1 - P-wave velocity of the upper layer
Vs1 - S wave velocity of the upper layer
Vp2 - P wave velocity of the lower layer
Vs2 - S wave velocity of the lower layer
from this we can write
$\frac{Sin Ip}{Vp1}=\frac{Sin Is}{Vs1}$
$Sin Is=Sin
Ip(\frac{Vs_{1}}{Vp_{1}})$
$Sin Is=Sin 30(\frac{\sqrt{3}}{3})$
$Sin Is=\frac{1}{2}(\frac{\sqrt{3}}{3})$
$Sin Is=\frac{1}{3.4}$
References : Fundamentals of Geophysics , William Lowrie
Post a Comment
Post a Comment