Introduction to gpsurya blog

$Dear$ $Friends,$ In this blog you will find around 320 solved Geophysics GATE and CSIR-NET and other competitive exams solutions with a better explanation. Please follow and share if you like it. $Thanks,$ $gpsurya$ and $group$

GATE_2019_85

2 comments

GATE_2019

85) The abundance of 234 U in secular equilibrium with its parent 238U will be _____________* 10-3 %( given that half-life of the 238U and 234U are 4.467* 109 y and 2.44 * 105 y respectively and the abundance of 238U is 99.28%).

(Thanks to Chandra Sekar, ANU)


Solution:

The Radioactive decay equilibrium can be defined as the 
 
$ \frac{N_{1}}{N_{2}}= \frac{\lambda_{2} - \lambda_{1}}{\lambda_{1}}$--------(1)

Where 
Abundance of 238U is given $(N_{1})$=99.28% and
Half life are given for  238U and 234U using these values we can calculate the decay constants.


$\lambda_{1}$ = $\frac{0.693}{t_{1 \frac{1}{2}}}$

half-life of 238U =4.467* 109 y

   =$\frac{0.693}{4.467*10^9}$ 

Decay constant $\lambda_{1}= 0.1551*10^{-9}$ 


$\lambda_{2}$ = $\frac{0.693}{t_{2 \frac{1}{2}}}$

half-life of 234U=2.44 * 105 y

    =$\frac{0.693}{2.44*10^5}$

  $= 0.2840*10^{-5}$  


Decay constant $\lambda_{2}  = 2840 * 10^{-9}$ 


Substitute the  above values in eq (1)

  
 $ \frac{N_{1}}{N_{2}} = \frac{\lambda_{2} - \lambda_{1}}{\lambda_{1}}$


 $ \frac{N_{1}}{N_{2}} = \frac{2840 * 10^{-9} -0.1551*10^{-9}}{0.1551*10^{-9}}$



 $ \frac{N_{1}}{N_{2}}= \frac{2839.8449*10^{-9}}{0.1551*10^{-9}}$

 
$ \frac{N_{1}}{N_{2}}= 18309.7672$


 $ N_{2}=\frac{N_{1}}{18309.7672}$


$ N_{2} = \frac{99.28}{18309.7672}$


$N_{2} = 0.005422$ 


  $ N_{2} = 5.42*10^{-3}$%



Reference:http://oregonstate.edu/instruct/ch374/ch418518/Chapter%203.pdf

Related Posts

2 comments

Post a Comment

Subscribe Our Newsletter