Introduction to gpsurya blog

$Dear$ $Friends,$ In this blog you will find around 320 solved Geophysics GATE and CSIR-NET and other competitive exams solutions with a better explanation. Please follow and share if you like it. $Thanks,$ $gpsurya$ and $group$

GATE_2020

Post a Comment

Gate_2020
 5) A sample of Granite is observed to have a P- wave velocity of 5 km/sec and density of 2600 kg/m3. The Bulk modules of the granite, assuming it to be a poissions solid is ____________ kilo-Pascal(Kpa).

(Thanks to Chandrasekhar, ANU)


Solution:
Given that $V_{p}$= 5 km/sec =5000m/sec
Density(ρ) = 2600 kg/m3
Bulk Modules(K)= ?
Poisson solid $(\nu)$ =0.25 

$\frac{V_{p}}{V_{s}} =\sqrt{\frac{2(1-\upsilon)}{(1-2\upsilon)}}$

$\frac{V_{p}}{V_{s}} =\sqrt{\frac{2(1-0.25)}{(1-2*0.25)}}$

$\frac{V_{p}}{V_{s}} =\sqrt{\frac{2(0.75)}{(1-0.5)}}$

$\frac{V_{p}}{V_{s}} =\sqrt{\frac{1.5}{0.5}}$

$\frac{V_{p}}{V_{s}} =\sqrt{\frac{1.5}{0.5}}$

$\frac{V_{p}}{V_{s}} =\sqrt{3}$
  
$V_{s}= \frac{V_{p}}{\sqrt{3}}$
$V_{s}= \frac{5000}{1.732}$
$V_{s}= 2886.83 m/sec^2$
We know that velocity of S-wave can be defined as follws


$V_{s}^{2}=\frac{\mu}{\rho}$
$\mu=\rho\times V_{s}^{2}$
$\mu=(2600)\times (2886.83)^{2}$
$\mu = 2.16\times 10^{10}$


Velocity of the P-wave can be defined as follows
$V_{p}^{2}= \frac{K + \frac{4}{3}\mu}{\rho}$
$(5000)^{2}= \frac{K + \frac{4}{3}( 2.16\times 10^{10})}{2600}$
$6.5\times 10^{10} = K + 2.88 \times 10^{10}$
$K = 3.62\times 10^{10} pascal $
$ K= 3.62 \times 10^{7} kilo - pascal$
K= 36200000 Kpa


Related Posts

Post a Comment

Subscribe Our Newsletter