Gate_2020
5)
A sample of Granite is observed to have a P- wave velocity of 5
km/sec and density of 2600 kg/m3.
The Bulk modules of the granite, assuming it to be a poissions solid
is ____________ kilo-Pascal(Kpa).
(Thanks to Chandrasekhar, ANU)
Solution:
Given
that $V_{p}$= 5 km/sec =5000m/sec
Density(ρ) = 2600 kg/m3
Bulk
Modules(K)= ?
Poisson solid $(\nu)$ =0.25
$\frac{V_{p}}{V_{s}} =\sqrt{\frac{2(1-\upsilon)}{(1-2\upsilon)}}$
$\frac{V_{p}}{V_{s}} =\sqrt{\frac{2(1-0.25)}{(1-2*0.25)}}$
$\frac{V_{p}}{V_{s}} =\sqrt{\frac{2(0.75)}{(1-0.5)}}$
$\frac{V_{p}}{V_{s}} =\sqrt{\frac{1.5}{0.5}}$
$\frac{V_{p}}{V_{s}} =\sqrt{\frac{1.5}{0.5}}$
$\frac{V_{p}}{V_{s}} =\sqrt{3}$
$\frac{V_{p}}{V_{s}} =\sqrt{\frac{2(1-0.25)}{(1-2*0.25)}}$
$\frac{V_{p}}{V_{s}} =\sqrt{\frac{2(0.75)}{(1-0.5)}}$
$\frac{V_{p}}{V_{s}} =\sqrt{\frac{1.5}{0.5}}$
$\frac{V_{p}}{V_{s}} =\sqrt{\frac{1.5}{0.5}}$
$\frac{V_{p}}{V_{s}} =\sqrt{3}$
$V_{s}=
\frac{V_{p}}{\sqrt{3}}$
$V_{s}=
\frac{5000}{1.732}$
$V_{s}=
2886.83 m/sec^2$
We
know that velocity of S-wave can be defined as follws
$V_{s}^{2}=\frac{\mu}{\rho}$
$\mu=\rho\times
V_{s}^{2}$
$\mu=(2600)\times
(2886.83)^{2}$
$\mu
= 2.16\times 10^{10}$
Velocity
of the P-wave can be defined as follows
$V_{p}^{2}=
\frac{K + \frac{4}{3}\mu}{\rho}$
$(5000)^{2}=
\frac{K + \frac{4}{3}( 2.16\times 10^{10})}{2600}$
$6.5\times
10^{10} = K + 2.88 \times 10^{10}$
$K
= 3.62\times 10^{10} pascal $
$
K= 3.62 \times 10^{7} kilo - pascal$
Post a Comment
Post a Comment