Processing math: 100%

Introduction to gpsurya blog

Dear Friends, In this blog you will find around 320 solved Geophysics GATE and CSIR-NET and other competitive exams solutions with a better explanation. Please follow and share if you like it. Thanks, gpsurya and group

GATE_2020

Post a Comment
Gate_2020
 
23) The geometrical factor for the electrode configuration given below is _____m


(Thanks to Chandrasekhar, ANU)
Solution:
The apparent resistivity of the electrode array is as follows
\rho_{a} =( 2\pi)(\frac{\triangle V}{I})\left\{(\frac{1}{r_{1}}-\frac{1}{r_{2}})-(\frac{1}{r_{3}}-\frac{1}{r_{4}})\right\}^{-1}

In this the term ( 2\pi)\left\{(\frac{1}{r_{1}}-\frac{1}{r_{2}})-(\frac{1}{r_{3}}-\frac{1}{r_{4}})\right\}^{-1} I s defined as the geometric factor for the Schulumberger array.

K =( 2\pi)\left\{(\frac{1}{r_{1}}-\frac{1}{r_{2}})-(\frac{1}{r_{3}}-\frac{1}{r_{4}})\right\}^{-1}

Given that 
 
r_{1} =20 m 

r_{2} =30 m

r_{3} =30 m

r_{4} =20 m

K =( 2\pi)\left\{(\frac{1}{r_{1}}-\frac{1}{r_{2}})-(\frac{1}{r_{3}}-\frac{1}{r_{4}})\right\}^{-1}

K =( 2\pi)\left\{(\frac{1}{20}-\frac{1}{30})-(\frac{1}{30}-\frac{1}{20})\right\}^{-1}

K =( 2\pi)\left\{(\frac{2}{20}-\frac{2}{30})\right\}^{-1}

K =( 2\pi)\left\{(\frac{20}{600})\right\}^{-1}

K = 2\times 3.14 \times 30

K = 188.4 m



Related Posts

Post a Comment

Subscribe Our Newsletter