39) In a rock sample the values of
$(\frac{87_{sr}}{86_{sr}})_{parent}$ and $(\frac{87_{Rb}}{86_{sr}})_{parent}$
are 0.7125 and 0.2 respectively. The decay constant (ʎ) $87_{Rb}$ is 1.42 * 10-11 year -1 and
the time before present (t) is 1000 million years. The value of the initial
ratio of $(\frac{87_{sr}}{86_{sr}})_{o}$ is ______
(Thanks to
Chandrasekhar, ANU)
Soltuion:
Given that of
$(\frac{87_{sr}}{86_{sr}})_{parent}$ = 0.7125
$(\frac{87_{Rb}}{86_{sr}})_{parent}$=0.2
ʎ = 1.42 * 10-11 year -1
t = 1000 million years
= 1000*106 years =
109 years
We
know that decay equation of Rb -Sr is
$(\frac{87_{sr}}{86_{sr}})_{parent}=(\frac{87_{sr}}{86_{sr}})_{o}+(\frac{87_{Rb}}{86_{sr}})_{parent}(e^{\lambda
t}-1)$---------------------------(1)
By
substituting the given values in the above equation
$(\frac{87_{sr}}{86_{sr}})_{parent}=(\frac{87_{sr}}{86_{sr}})_{o}+(\frac{87_{Rb}}{86_{sr}})_{parent}(e^{\lambda
t}-1)$
$0.7125=(\frac{87_{sr}}{86_{sr}})_{o}+0.2(e^{1.42\times
10^{-11}\times 10^{9} }-1)$
$0.7125=(\frac{87_{sr}}{86_{sr}})_{o}+0.2(e^{1.42\times
10^{-2} }-1)$
$0.7125=(\frac{87_{sr}}{86_{sr}})_{o}+0.2(e^{0.0142}-1)$
$0.7125=(\frac{87_{sr}}{86_{sr}})_{o}+0.2(1.0143-1)$
$0.7125=(\frac{87_{sr}}{86_{sr}})_{o}+0.2(0.0143)$
$0.7125=(\frac{87_{sr}}{86_{sr}})_{o}+0.00286$
$(\frac{87_{sr}}{86_{sr}})_{o}=0.7125-0.00286$
$(\frac{87_{sr}}{86_{sr}})_{o}=0.7096$
Post a Comment
Post a Comment