From the experimental studies, values for Crustal rocks are density $ρ=2650 kg/m^3$, thermal conductivity $K_c= 2.51 W /m K$ and Specific heat $Cp =500 J/Kg. K$. Approximate the penetration depth (The daily temperature variation = $7.27 ×10^{-5} /s$).
Solution:
Density
$\rho = 2650 kg/m^3$
Thermal
Conductivity $K_c=2.5 W/m K$
Specific
Heat $C_p=700 J/Kg. K$
To
Calculate the Thermal diffusivity $K_d$ is
$K_d=
\frac{K_c}{\rho c_p}$
$K_d=
\frac{2.5}{2650 \times 700}$
$K_d=
1.35 \times 10^{-6} \frac{m^2}{s}$
Decay
depth (or) Penetration depth (d) is
$d
=\sqrt{\frac{2 K_d}{\omega}}$
$d
=\sqrt{\frac{2\times 1.35\times 10^{-6}}{7.27\times 10^{-5}}}$
$d=0.192
m$
$d=
19.2 cm$
Extra
information:
Heat
flux (q) is defined as the amount of heat passing through a unit area in a unit
time.
$q= \frac{J}{s m^2}$
$q=\frac{W}{m^2}$
Derive the Work units,
$Work
=Force \times Displacement$
$Work
= mass \times acceleration \times Displacement $
$Work
= mass \times \frac{Velocity}{time} \times Displacement$
$Work
= kg \times \frac{m}{s^2} \times m$
$Work
= kg \times \frac{m^2}{s^2}$
$kg \times \frac{m^2}{s^2} = Joules $
Watts is defined as
$Watts= \frac{Joules}{second} $
Finally derive the units of Thermal conductivity $K_c$ is
$K_c=\frac{q}{\frac{dT}{dZ}}$
q= Heat flux
$\frac{dT}{dZ}$=geothermal gradient
$\frac{dT}{dZ}
units= \frac{K}{m}$
$K_c
units=\frac{Joules}{m. K}$
Reference : Fundamental of Geophysics, William Lowrie.
Post a Comment
Post a Comment