Q) A Satellite is revolving around the earth at a height of 600 km. Considering the radius of the earth as 6400 km, the mass of the earth is $6 \times 10^{24} kg $ and gravitational constant (G) as $ 6.67 \times 10^{-11} Nm^{2}/kg^{2}$ the time period of the satellite will be
(Special thanks
to Chandrasekhar, AKNU)
Solution:
Given
that radius of the earth (R) = 6400 km
Height of the
satellite from the earth (h) = 600km
Gravitational
constant (G) =$ 6.67 \times 10^{-11} Nm^{2}/kg^{2}$
Mass of the
earth (M)= $6 \times 10^{24} kg $
Time
period of the satellite (T) =?
From Kepler’s third law
$T^{2}=(\frac{4\pi^{2}}{GM})a^{3}$-----------------------------------------------------------(1)
Where a
is the semi-major axis of the satellite where we will get from the center of
the earth
i.e., a= R + h=
6400+ 600
= 7000 km
=$7\times 10^{3} km$
=$7\times 10^{6} meter$
$G\times
M=(6.67 \times 10^{-11} Nm^{2}/kg^{2})(6 \times 10^{24} kg )$
$=(6.67)(6)(10^{13})m^{3}/s^{2}$
$=40.02\times10^{13}m^{3}/s^{2}$
By
substituting the above values in equation (1)
$T^{2}=(\frac{4\pi^{2}}{GM})a^{3}$
$T^{2}=(\frac{(4)(3.14)(3.14)}{40.02\times10^{13}m^{3}/s^{2}})(7\times
10^{6} meter)^{3}$
$T^{2}=\frac{(4)(3.14)(3.14)(7)(7)(7)10^{18}m^{3}}{40.02\times10^{13}m^{3}/s^{2}}$
$T^{2}=(\frac{13527.3712}{40.02})10^{5}s^{2}$
$T^{2}=338.01527\times
10^{5}s^{2}$
$T^{2}=33.801527\times
10^{6}s^{2}$
$T=\sqrt{33.801527\times
10^{6}s^{2}}$
$T=5.813\times
10^{3} seconds$
Post a Comment
Post a Comment