116. What will be the approximate skin depth of electromagnetic waves of frequency 1 kHz in a conductor having conductivity 100 S/m ?
a) 16 meters
b). 1.6 meters
c). 016 meters
d). 0.016 meter
(Thanks to Pragnath, AU)
Solution: -
Skin depth formula $D = 503.8 *
\sqrt{(\frac{\rho}{f})}$
Given that (conductivity)$
~\sigma= 100 S/m~$
(conductivity) $\sigma=\frac{1}{\rho (resistivity)} $
$ \rho=\frac{1}{100}$
$D = 503.8 * \sqrt{(\frac{1/100}{1000})}$
$D=
503.8*\frac{\sqrt{0.01}}{\sqrt{1000}}$
$D= 503.8*\frac{{0.1}}{{31.622}}$
$D= 503.8*0.0031623$
$D\approx1.6$
The answer is option (b)
1.6 meter
Post a Comment
Post a Comment