22. Skin Depth in homogeneous media of resistivity $\rho_{1}$ and $\rho_{2}$ are 100 m and 200 m respectively, at 1000Hz frequency. The ratio $\frac{\rho_{1}}{\rho_{2}}$ will be __________.
(Thanks to Pragnath, AU)
Solution:
Skin depth formula $D = 503.8 * \sqrt{(\frac{\rho}{f})}$
Given that,
$D_{1}= 100m~,D_{2}= 200 m$; $f=1000~Hz$
$\frac{D_{1} = 503.8 * \sqrt{(\frac{\rho_{1}}{f})}}{D_{2} = 503.8 * \sqrt{(\frac{\rho_{2}}{f})}}$
$\frac{100}{200}=\frac{503.8
* \sqrt{(\frac{\rho_{1}}{1000})}}{ 503.8 * \sqrt{(\frac{\rho_{2}}{1000})}}$
$\frac{1}{2}=\frac{\sqrt{(\frac{\rho_{1}}{1000})}}{\sqrt{(\frac{\rho_{2}}{1000})}}$
$\frac{1}{2}=\frac{\sqrt{(\rho_{1}}}{\sqrt{(\rho_{2}})}$
Squaring on both sides we
get
$\frac{1}{4}=\frac{{\rho_{1}}}{\rho_{2}}$
$\frac{{\rho_{1}}}{\rho_{2}}=0.25$
Post a Comment
Post a Comment